Loading

'проводник'

Графен – новый материал для интегральных схем будущего

Графеновый транзистор имеет три режима работыГрафен получил мировое признание и известность совсем недавно, когда двое ученых были удостоены Нобелевской Премии по Физике за исследование уникальных свойств этого удивительного материала. Следующий шаг – использование графена для создания более компактных микросхем.

Исследователям уже удавалось создавать невероятно быстрые транзисторы с использованием графена. Сейчас они разрабатывают графеновый транзистор, который может работать в трех различных режимах, для реализации которых в обычном чипе потребовалось бы три отдельных полупроводниковых транзистора. Такие настраиваемые транзисторы позволят создавать более компактные и менее энергоемкие чипы для, например, беспроводных коммуникаций.

Графеновые чипы будущего, будут состоять из меньшего количества транзисторов, выполняя те же функции, что и их полупроводниковые аналоги, при меньшей себестоимости, более высокой степени интеграции (компактности), и меньшего энергопотребления. Очевидным становится перспективность применения чипов с графеновыми транзисторами в первую очередь в мобильных устройствах требовательных к компактности и энергоэффективности. Новый графеновый транзистор – устройство аналоговое, обычно применяемое в беспроводных коммуникациях: в мобильных телефоны, плеерах, Bluetooth гарнитурах.

Read more...

Сверхпроводники достигли совершеннолетия и Южной Кореи

Сверхпроводники будут "освещать" улицы СеулаЮжная Корея разместила крупнейший до сегодняшнего дня заказ на сверхпроводящие кабели, которые будут использоваться в силовых сетях Сеула, обеспечивая пониженные потери электроэнергии при транспортировке к потребителю.

Более ста лет назад датский физик Хейке Каммерлинг-Оннес  (Heike Kamerlingh Onnes) обнаружил, что электрическое сопротивление ртути падает до нуля, если поместить металл в жидкий гелий, сегодня сверхпроводники находят свое применение в мощных электромагистралях.

Сверхпроводящие материалы способны транспортировать в 10 раз большее количество энергии при том же сечении проводника, чем провода из привычной меди. Безусловно, часть энергии придется потратить на поддержание низкой температуры  сверхпроводника с помощью жидкого азота, но даже при этом потери мощности окажутся ниже, чем в обычном кабеле, изготовленном из меди, который превращает в тепло от 7 до 10 процентов электроэнергии. Поэтому все большее количество стран, среди которых и Южная Корея, стремятся максимально сократить потери электричества в сетях, особенно в свете внедрения умных технологий Smart Grid и готовности к выходу на сцену электромобильного транспорта.

Все это звенья одной цепи: электростанции, силовые линии электропередач, контроль и мониторинг потребления, аккумулирование энергии, разумное потребление. И оптимизация каждого из этих блоков приводит к потрясающему увеличению эффективности всей системы.

Южнокорейская компания LS Cable заказала поставку более 3-х миллионов метров сверхпроводящего кабеля у американской компании American Superconductor.

Read more...